Abstract

We implemented the atomic frequency comb protocol for optical quantum memory in an isotopically pure crystal of Y7LiF4 doped by 143Nd3+ ions. Echo signals were observed on the 4I9/2(1)–4F3/2(1) transition, which had inhomogeneous broadening much smaller than the hyperfine splitting of the ground and excited states. We performed hole-burning spectroscopy measurements on several transitions, obtaining information about the hyperfine state lifetimes. An intrinsic hole structure was found on some of the transitions, which allowed us to prepare a comb structure with two clearly defined periods and to observe echo pulses with different time delays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call