Abstract

A simple analytical model is built up to account for the interface deformation effect in a spherical atomic force microscopy (AFM)-based quasi-static indentation of a living cell covered with a pericellular brush. The compression behaviour of the pericellular coat is described using the Alexander–de Gennes model that allows for nonlinear deformation. An approximate second-order relation between contact force and indenter displacement is obtained in implicit form, using the Hertzian solution as a first-order approximation. A method of fitting the indentation brush/cell model to experimental data is suggested based on the non-dimensionalized version of the displacement–force relation in the parametric form and illustrated with a specific example of AFM raw data taken from the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call