Abstract

Casein micelles (CMs) are colloidal phospho-protein-mineral complexes naturally present in milk. This study used atomic force microscopy (AFM) in a liquid environment to evaluate the topography and nanomechanics of single native CMs immobilized by a novel capture method. The proposed immobilization method involves weak interactions with the antiphospho-Ser/Thr/Tyr monoclonal antibody covalently bound to a carboxylic acid self-assembled monolayer (SAM) on a gold surface. This capture strategy was compared to the commonly used covalent immobilization method of CMs via carbodiimide chemistry. With this conventional method, CMs remained mainly mobile during AFM measurements in liquid, disturbing the evaluation of their average size and elastic properties. Conversely, when captured by the specific antibody, they were successfully immobilized and their integrity was preserved during the AFM measurement. The characterization of both CM topography and elastic properties was carried out in a liquid ionic environment at native pH 6.6. The CMs' capture efficiency via antibody was concurrently proved by surface plasmon resonance. The calculation of casein micelles' width, height, and contact angle was carried out from the recorded 2D AFM images. CMs were characterized by a mean width of 148 ± 8 nm and a mean height of 42 ± 1 nm. Weak forces were applied to single captured CMs. The obtained force versus indentation curves were fitted using the Hertz model in order to evaluate their elastic properties. The elasticity distribution of native CMs exhibited a unimodal trend with a peak centered at 269 ± 14 kPa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call