Abstract

In this work, atomic force microscopy (AFM) was employed to characterize the elastic properties of a living suspension of Nicotiana tabacum L. cv. Bright Yellow (BY-2) cells and to investigate the changes in plant-cell elasticity that were induced by water-soluble C70 fullerene derivatives. The results revealed different effects of the three fullerene derivatives that had different numbers of carboxylic groups on the cell elasticity. BY-2 cells that were repressed by dimalonic-acid-modified C70 fullerenes (DiF70) and trimalonic-acid-modified C70 fullerenes (TriF70) showed a clear decrease in their Young's modulus. However, the Young's modulus of cells that were treated with tetramalonic-acid-modified C70 fullerenes (TetraF70) increased. Disruption of the actin cytoskeleton arrangement was observed following treatment with DiF70 and TriF70, but not with TetraF70. Moreover, the fullerene-induced cell-elasticity change was consistent with the change in cell-proliferation rate. This work provides a new approach and valuable information for the study of the biological effect of nanomaterials on plant cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.