Abstract
The morphology and functional state of red blood cells (RBCs) mainly depends on the configuration of the spectrin network, which can be broken under the influence of intoxication because of oxidation processes in the cells. Measurement of these processes is a complex problem. The most suitable and prospective method that resolves this problem is atomic force microscopy (AFM). We used AFM to study the changes in the spectrin matrix and RBC morphology during oxidation processes caused by ultraviolet (UV) irradiation in RBC suspension. The number of discocytes decreased from 98% (in control) to 12%. We obtained AFM images of the spectrin matrix in RBC ghosts. Atomic force microscopy allows for the direct observation and quantitative measurement of the disturbances in the structure of the spectrin matrix during oxidation processes in RBCs. The typical section size of the spectrin network changed from approximately 80 to 200nm (in control) to 600nm and even to 1000nm after UV irradiation. An AFM study showed that incubation of RBCs with Cytoflavin® after UV irradiation preserved the forms of RBCs almost at control levels; 89% of the cells remained as discocytes. To quantify the intensity of the oxidation-reduction processes, the percentage of haemoglobin derivatives was measured. The content of methaemoglobin varied in the range of 1% to 70% during the experiments. These evidence-based studies are important for the fundamental research of interactions during redox processes in RBCs at the molecular level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.