Abstract

We used the reactive unbalanced close-field dc-magnetron sputtering growth of TiN–TiB 2 on Si(1 0 0) at room temperature to determine if scaling theory provides insight into the kinetic mechanisms of two-phase nanocomposite thin films. Scaling analyses along with height-difference correlation functions of measured atomic force microscopy (AFM) images have shown that the TiN–TiB 2 nanocomposite films with thickness ranging from 70 to 950 nm exhibit a kinetic surface roughening with the roughness increasing with thickness exponentially. The roughness exponent α and growth exponent β are determined to be ∼0.93 and ∼0.25, respectively. The value of dynamic exponent z, calculated by measurement of the lateral correlation length ξ, is ∼3.70, agreeing well with the ratio of α to β. These results indicate that the surface growth behavior of sputter-deposited TiN–TiB 2 thin films follows the classical Family-Vicseck scaling and can be reasonably described by the noisy Mullins diffusion model, at which surface diffusion serves as the smoothing effect and shot noise as the roughening mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.