Abstract

BackgroundIntracellular hemoglobin polymerization has been supposed to be the major determinant for the elevated rigidity/stiffness of sickle erythrocytes from sickle cell anemia (SCA) patients. However, the contribution of the cell envelope remains unclear.ResultsIn this study, using atomic force microscopy (AFM), we compared the normal and sickled erythrocyte surfaces for stiffness and topography. AFM detected that sickle cells had a rougher surface and were stiffer than normal erythrocytes and that sickle cell ghosts had a rougher surface (for both outer and inner surfaces) and were thicker than normal ghosts, the latter implying a higher membrane-associated hemoglobin content/layer in the sickle cell envelope. Compared to healthy subjects, the SCA patients had lower plasma lipoprotein levels. AFM further revealed that a mild concentration of methyl-β-cyclodextrin (MβCD, a putative cholesterol-depleting reagent) could induce an increase in roughness of erythrocytes/ghosts and a decrease in thickness of ghosts for both normal and sickle cells, implying that MβCD can alter the cell envelope from outside (cholesterol in the plasma membrane) to inside (membrane-associated hemoglobin). More importantly, MβCD also caused a more significant decrease in stiffness of sickle cells than that of normal erythrocytes.ConclusionsThe data reveal that besides the cytosolic hemoglobin fibers, the cell envelope containing the membrane-associated hemoglobin also is involved in the biomechanical properties (e.g., stiffness and shape maintenance) of sickle erythrocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call