Abstract

Atomic force microscopy was used to study the three-dimensional molecular topography and calcium-sensitive conformational changes of Connexin40 hemichannels (connexons) reconstituted in 1,2-dioeloyl-sn-glycero-3-phosphatidylcholine lipid bilayers. Two classes of objects were observed that differed in their protrusion heights above the bilayer (2.6 versus 4.2 nm). Comparison to reconstituted connexons containing Connexin40 truncated to eliminate most of its C-terminal cytoplasmic domain showed that the two height classes corresponded to the shorter extracellular and taller cytoplasmic aspects of the hemichannels and that the C-terminal tail of Connexin40 contributes ∼1.6 nm in thickness. Hemichannels imaged in solutions containing < 10 μm Ca(2+) showed 3.1-3.2 nm depressions (openings) in 30% of the cytoplasmic faces and 65% of the extracellular faces, and high-resolution three-dimensional topography of extracellular or cytoplasmic aspects of some connexons was observed. After addition of 3.6 mm Ca(2+), > 75% of the connexons in either orientation adopted closed conformations. In contrast, hemichannels imaged in the presence of 0.1 mm EDTA showed large (5.6- to 5.8-nm diameter) openings in nearly all hemichannels regardless of orientation, and detailed topography was visible in many connexons. Real-time imaging following the addition of 3.6 mm Ca(2+) showed transitions of both extracellular and cytoplasmic orientations from "open" into "closed" conformations within several minutes. These studies provide the first high-resolution topographic information regarding a connexin with a large cytoplasmic domain and suggest that the extramembranous portions of Connexin40 contribute to a channel entrance that is relaxed by chelation of residual divalent cations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.