Abstract

We use atomic force microscopy to measure the distance-dependent solvation forces and the dissipation across liquid films of octamethylcyclotetrasiloxane (OMCTS) confined between a silicon tip and a highly oriented pyrolytic graphite substrate without active excitation of the cantilever. By analyzing the thermal bending fluctuations, we minimize possible nonlinearities of the tip-substrate interaction due to finite excitation amplitudes because these fluctuations are smaller than the typical 1 Å, which is much smaller than the characteristic interaction length. Moreover, we avoid the need to determine the phase lag between cantilever excitation and response, which suffers from complications due to hydrodynamic coupling between cantilever and fluid. Consistent results, and especially high-quality dissipation data, are obtained by analyzing the power spectrum and the time autocorrelation of the force fluctuations. We validate our approach by determining the bulk viscosity of OMCTS using tips with a radius of approximately 1 μm at tip-substrate separations >5 nm. For sharp tips we consistently find an exponentially decaying oscillatory tip-substrate interaction stiffness as well as a clearly nonmonotonic variation of the dissipation for tip-substrate distances up to 8 and 6 nm, respectively. Both observations are in line with the results of recent simulations which relate them to distance-dependent transitions of the molecular structure in the liquid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.