Abstract
Collagen plays a decisive role as a functional substrate in tissue engineering. In particular, the rigidity of the collagen influences the behaviour of the attached cells. Thus, modification and controlled adjustment of collagen's characteristics are essential. To this end, controlled exposure to ultraviolet (UV) light is a promising process because it can be temporally and spatially well defined. In this study, we investigated the effect of UV exposure on surface supported single collagen fibrils in situ. This procedure allowed for a direct comparison between the untreated and modified states of type I collagen. Atomic force microscopy was used to map the mechanical properties. Exposure to UV light was used to influence the mechanical properties of the fibrils in varied liquid environments (deionized water and phosphate-buffered saline (PBS)). The results led to the assumption that combined UV/thermal treatment in deionized water continuously lowers the elastic modulus. In contrast, experiments performed in PBS-based solutions in combination with UV-B and UV-C light or thermal treatment up to 45 °C suggested an increase in the modulus within the first 30–40 min that subsequently decreased again. Thus, the wavelength, exposure, temperature, and chemical environment are relevant parameters that need to be controlled when modifying collagen using UV light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.