Abstract
Large macrocyclic poly(chloroethyl vinyl ether)s (PCEVE)s of controlled ring size and narrow distribution were synthesized by a ring-closure process involving the intramolecular formation of acetal linkages between the two external blocks of linear ABC triblock precursors prepared by living cationic polymerization. The corresponding shape-persistent ring P(CEVE-g-PS) combs having macrocyclic poly(chloroethyl vinyl ether) backbones and polystyrene side chains were then synthesized by a "grafting onto" technique and characterized by size exclusion chromatography (SEC) analysis and atomic force microscopy (AFM) imaging of isolated molecules. Quantitative hydrolysis of the acetal linkages of the macrocyclic PCEVE backbone in acidic conditions yields the linear poly(chloroethyl vinyl ether)-g-polystyrene) homologue and allows a direct comparison of the characteristics and dimensions of cyclic and linear comb architecture. The influence of the chain architecture and PS graft dimensions on the dilute tetrahydrofuran (THF) solution properties, radius of gyration, and hydrodynamic radius of the comb copolymers is also studied and compared to data reported for linear and cyclic polystyrene chains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.