Abstract

Atomic force microscopy (AFM)-based nanoscale infrared (nano-IR) techniques have found extensive application in the fields of chemistry, physics, and materials science, enabling the visualization of nanoscale features that surpass the optical diffraction limit. More recently, tentative investigations have been conducted into the use of these techniques in the field of catalysis, particularly in studying interfacial processes involving molecular monolayer samples. IR nanoimaging and nanospectroscopy offer unique perspectives on catalytic processes. Considering the specific characteristics of catalytic processes, this Perspective highlights the need for and reviews the current status of AFM-based nano-IR techniques for catalysis investigations, which aims to contribute to a deeper understanding of the nanoscale mechanisms underlying the catalytic processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.