Abstract
The Atomic Force Microscopy (AFM) technique appears as a central tool for the characterization of DNA adsorption onto lipid interfaces. Regardless of the huge number of surveys devoted to this issue, there are still fascinating phenomena in this field that have not been explored in detail by AFM. For instance, adsorption of DNA onto like-charged lipid surfaces mediated by cations is still not fully understood even though it is gaining popularity nowadays in gene therapy and nanotechnology. Studies related to the complexation of DNA with anionic lipids as a non-viral gene delivery vehicle as well as the formation of self-assembled nanoscale DNA constructs (DNA origami) are two of the most attractive systems. Unfortunately, molecular mechanisms underlying the adsorption of DNA onto anionic lipid interfaces remain unclear so far. In view of that, AFM becomes an appropriate technique to provide valuable information to understand the adsorption of DNA to anionic lipid surfaces. As a second part of this review we provide an illustrative example of application of the AFM technique to probe the DNA adsorption onto a model lipid monolayer negatively charged. Microsc. Res. Tech. 80:11-17, 2017. © 2016 Wiley Periodicals, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.