Abstract

We have used an in vitro system that mimics the assembly of immature Moloney murine leukemia virus (M-MuLV) particles to examine how viral structural (Gag) proteins oligomerize at membrane interfaces. Ordered arrays of histidine-tagged Moloney capsid protein (his-MoCA) were obtained on membrane bilayers composed of phosphatidylcholine (PC) and the nickel-chelating lipid 1,2-di- O-hexadecyl-sn-glycero-3-(1′-2”-R-hydroxy-3′ N-(5-amino-1-carboxypentyl)iminodiacetic acid)propyl ether (DHGN). The membrane-bound arrays were analyzed by electron microscopy (EM) and atomic force microscopy (AFM). Two-dimensional projection images obtained by EM showed that bilayer-bound his-MoCA proteins formed cages surrounding different types of protein-free cage holes with similar cage holes spaced at 81.5-Å distances and distances between dissimilar cage holes of 45.5 Å. AFM images, showing topological features viewed near the membrane-proximal domain of the his-MoCA protein, revealed a cage network of only symmetrical hexamers spaced at 79-Å distances. These results are consistent with a model in which dimers constitute structural building blocks and where membrane-proximal and distal his-MoCA regions interact with different partners in membrane-bound arrays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.