Abstract

Since its invention, the atomic force microscope has been used to image a wide variety of biological samples, including viruses. Viral entry into, and egress from, cultured cells has been extensively studied using numerous scientific techniques and to a limited extent using atomic force microscopy. One of the main structural differences that can exist between viruses is the absence, or presence, of an envelope and this factor has consequences for the mode of viral entry and egress. In this study, the entry into, and egress from, cultured cells of enveloped and non-enveloped viruses were investigated using atomic force microscopy. No significant cell surface changes were observed following infection with enveloped or non-enveloped viruses. Although roughness analysis of viral entry revealed cell smoothing post-infection, no differences between the roughness values of enveloped and non-enveloped viral entry were observed. Line analysis of viral entry revealed minor differences between cells infected with an enveloped rather than a non-enveloped virus. These differences may represent a distinction between the uptake processes of enveloped and non-enveloped viruses. Studies of viral egress revealed that infected cells were undergoing cytopathic changes. Whilst topographic, height and roughness differences clearly occurred between virally- and mock-infected cells, no significant differences were elucidated between enveloped and non-enveloped viral egress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call