Abstract

The structure of cortical bone at the collagen-mineral level was investigated by means of atomic force microscopy. Surfaces of the specimens treated with collagenase and ethylenediaminetetraacetic acid (EDTA) were examined. Images of blob-like objects observed in intact specimen became clearly outlined after collagenase treatment; the sizes of the blob decreased, suggesting that each blob had been fragmented by the collagenase treatment. Following EDTA treatment of an intact specimen, an image of thread-like objects appeared; the thread was partly constructed by trains of blobs and the other parts of the threads had a periodic pattern along its longer axis. The period was almost equal to the collagen D-period of the Hodge-Petruska model, indicating that the threads are collagen fibrils and that the blobs are related to the mineral phase in bone. It was concluded that minerals were deposited on and along collagen fibrils. A decorated collagen fibril model for the spatial relationship between mineral and collagen fibril was proposed. According to our model, the mineral inside the collagen fibril is about one forth of the extrafibrillar mineral.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.