Abstract

Reactive ion etching of diamond interfaces using oxygen plasma is a widely used approach for the formation of diamond nanowires. In this paper, we highlight the influence of the doping level of the etched diamond substrate on the density of the resulting nanowires. Heavily boron-doped diamond interfaces result in very dense diamond nanowires, while etching of low boron-doped diamond substrates results in sparsely formed nanostructures, as boron dopant atoms in the diamond act as masks during the etching process. In pursuit of a better understanding of doping and plasma etching effects, we demonstrated by performing Raman imaging on single diamond nanowires that the etching process leads to a dedoping of the wire tip and a partial transformation of diamond to sp2 carbon. The etching process does not, however, alter the initial diamond feature of the rest of the nanowire. Finally, the activity of the different diamond nanowires toward oxygen reduction in alkaline solution was investigated. Interestingly, hi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.