Abstract
An integration of atomic force microscopy (AFM) and scanning electron microscopy (SEM) within a single system is opening new capabilities for correlative microscopy and tip-induced nanoscale interactions. Here, the performance of an AFM-integration into a high resolution scanning electron microscope and focused ion beam (FIB) system for nanoscale characterization and nanofabrication is presented. Combining the six-axis degree of freedom (DOF) of the AFM system with the DOF of the SEM stage system, the total number of independent degree of freedom of the configuration becomes eleven. The AFM system is using piezoresistive thermomechanically transduced cantilevers (active cantilevers). The AFM integrated into SEM is using active cantilevers that can characterize and generate nanostructures all in situ without the need to break vacuum or contaminate the sample. The developed AFM-integration is described and its performance is demonstrated. The benefit of the active cantilever prevents the use of heavy and complex optical cantilever detection technique and makes the AFM integration into a SEM very simple and convenient. Results from combined examinations applying fast AFM-methods and SEM-image fusion, AFM-SEM combined metrology verification, and tip-based nanofabrication are shown. Simultaneous operation of SEM and AFM provides a fast navigation combined with sub-nm topographic image acquisition. The combination of two or more different types of techniques like SEM, energy dispersive x-ray spectroscopy, and AFM is called correlative microscopy because analytical information from the same place of the sample can be obtained and correlated [1]. We introduced to the SEM/FIB tool correlative nanofabrication methods like field-emission scanning probe lithography, tip-based electron beam induced deposition, and nanomachining/nanoidentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.