Abstract

Background The G-protein coupled bile acid receptor (GPBAR1), commonly known as TGR5 is a transmembrane protein associated with diabetes, metabolic syndrome, inflammation and cancer in various organs. Together with these diseases a TGR5 deficiency, overexpression or mutation can often be observed. Due to this association of TGR5 and its mutants with different disorders, TGR5 is seen as a potential drug target. For the successful development of TGR5 agonists, it is important to have detailed information on the protein’s structure and the structural changes caused by mutations. TGR5 is activated by bile acids (BAs), making BAs potential drug candidates [1]. BAs are signaling molecules with systemic endocrine functions, such as the regulation of bile acid, glucose & lipid metabolism, immune response and cell proliferation and differentiation [2]. However, BAs target several nuclear and plasma receptors, like the farnesol X receptor and TGR5, at once [3]. This makes it difficult to find TGR5 specific agonists. Knowledge about the interactions between BAs and TGR5 could help in the development of BA-derivatives and other new synthetic agonists exclusively targeting TGR5 with high efficiency. To study proteins, especially membrane proteins, different methods, e.g. atomic force microscopy and total internal reflection fluorescence microscopy can be applied. However, these methods are in need of a solid support and the protein being present in a defined orientation. In our group we have studied bacterial membrane proteins, e.g. bacteriorhodopsin, with single-molecule atomic force microscopy and spectroscopy [4,5]. The atomic force microscope (AFM) is a tool to image biological surfaces with sub-nanometer resolution. Important for biomolecules, like transmembrane proteins, is the fact that they can be studied in their natural environment, an aqueous solution. Force measurements performed with the AFM on individual molecules reveal interand intramolecular interaction at the pN scale [5], showing structural details, information on protein stability and the interactions between different molecules. These force measurement take advantage of the interaction between AFM tip and protein to pull the protein out of the membrane. When the terminus of the protein adsorbs to the tip, we can observe the unfolding of all protein domains as the tip moves away from the surface. Some domains of membrane proteins are embedded inside the membrane, e.g. a-helices, while other domains, e.g. loops, are outside. Using force measurements the different constitutions and chain lengths’ of these domains, as well as the force required to unfold them can be identified. Due to this it was already possible to show new locations for structural changes in sensory rhodopsin 2 upon light activation. It was also demonstrated, that the conformational answer after light activation varies if another protein is bound to sensory rhodopsin 2 [4]. Further studies on the effect of compatible solutes on bacteriorhodopsin showed a general stabilization of membrane proteins by ectoine [5]. Interactions between two molecules, like TGR5 and a BA could thus also be distinguishable in a similar manner. Although the AFM allows for us to study membrane proteins in their natural environment, an aqueous solution, membrane proteins, if removed from the cell, have to be stabilized by detergents or a lipid membrane in order to

Highlights

  • The G-protein coupled bile acid receptor (GPBAR1), commonly known as TGR5 is a transmembrane protein associated with diabetes, metabolic syndrome, inflammation and cancer in various organs

  • For the force measurements and atomic force microscope (AFM) imaging the protein is reconstituted into a tethered bilayer lipid membranes (tBLMs)

  • The support is functionalized with tris-nitrilotriacetic acid (trisNTA), allowing for a membrane proteins His6-tag to couple to the surface

Read more

Summary

Background

The G-protein coupled bile acid receptor (GPBAR1), commonly known as TGR5 is a transmembrane protein associated with diabetes, metabolic syndrome, inflammation and cancer in various organs Together with these diseases a TGR5 deficiency, overexpression or mutation can often be observed. Especially membrane proteins, different methods, e.g. atomic force microscopy and total internal reflection fluorescence microscopy can be applied. Force measurements performed with the AFM on individual molecules reveal inter- and intramolecular interaction at the pN scale [5], showing structural details, information on protein stability and the interactions between different molecules. Using force measurements the different constitutions and chain lengths’ of these domains, as well as the force required to unfold them can be identified Due to this it was already possible to show new locations for structural changes in sensory rhodopsin 2 upon light activation. Combining the AFM with the reconstitution of a functional membrane protein into a tBLM will allow us to gain structural information on membrane proteins

Materials and methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.