Abstract

We calculate the ground-state properties of an unpolarized two-component Fermi gas with the aid of the diffusion quantum Monte Carlo (DMC) methods. Using an extrapolation to the zero effective range of the attractive two-particle interaction, we find $E/{E}_{\mathrm{free}}$ in the unitary limit to be 0.212(2), 0.407(2), 0.409(3), and 0.398(3) for 4, 14, 38, and 66 atoms, respectively. Our calculations indicate that the dependence of the total energy on the effective range of the interaction ${R}_{\mathrm{eff}}$ is sizable and the extrapolation to ${R}_{\mathrm{eff}}=0$ is therefore important for reaching the true unitary limit. To test the quality of nodal surfaces and to estimate the impact of the fixed-node approximation, we perform released-node DMC calculations for 4 and 14 atoms. Analysis of the released-node and the fixed-node results suggests that the main sources of the fixed-node errors are long-range correlations, which are difficult to sample in the released-node approaches due to the fast growth of the bosonic noise. Besides energies, we evaluate the two-body density matrix and the condensate fraction. We find that the condensate fraction for the 66-atom system converges to 0.56(1) after the extrapolation to the zero interaction range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.