Abstract

The atomic dynamics of an Al71.3Ni24Fe4.7 decagonal quasicrystal has been investigated using the isotopic contrast method for inelastic neutron scattering. The partial vibrational spectra of the Ni, Fe, and Al atoms and the spectrum of the thermal vibrations of the alloy have been reconstructed directly from the experimental data without any model assumptions. The cutoff energies and the positions of the main features of the spectra have been determined. It has been revealed that the average binding energy of the nickel atoms in the quasicrystal under investigation is lower than that of the iron atoms and the vibrational spectrum of the aluminum atoms is noticeably harder than the spectrum of the pure metal. The results obtained for the d-AlNiFe decagonal quasicrystal have been compared with the previously published data for an i-AlCuFe icosahedral quasicrystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.