Abstract

Despite its apparent simplicity, spreading of liquid metals at high temperatures has defied description and generalization. Wetting at high temperature is usually accompanied by interdiffusion and chemical reaction, but the forces that drive reactive spreading and the mechanisms that control its kinetics have been very poorly understood. The unsolved challenge has been to link macroscopic measurements such as the dynamic contact angle or the speed of a moving liquid front to phenomena occurring at the microscopic and even atomic level in the vicinity of the triple solid-liquid-vapour junction. We have taken a big step towards meeting this challenge. Our systematic analysis of the spreading of metal-metal systems with varying degrees of mutual solubility allows us to report on the fundamental differences between the mechanisms controlling spreading of organic liquids and liquid metals and on formation of Marangoni films driven by surface-tension gradients in high-temperature systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.