Abstract
ABSTRACTThe decomposition of molecular energies into atomic contributions within Bader's atoms-in-molecules theory is instrumental in rationalising and accounting for not only the stability but also the reactivity of chemical species. Regardless of how it is achieved, it requires the partitioning of the electronic kinetic energy. While this is ‘natural’ (but computationally expensive) in the context of wavefunction approaches, it is not more practically straightforward in the framework of Kohn–Sham density functional theory, since the corresponding atomic fictitious (related to the non-interacting system) and correlation components must be calculated. In this paper, we discuss the ability of various approaches, based on either exact formal relationships or previously proposed functional approximations, to estimate them in an efficient way for a wide variety of molecular systems. Such results might pave the way toward the realistic modelling of larger systems of chemical interest and may provide new atomic descriptors to characterise atom types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.