Abstract

Motived by the recent measurement of transition lines for Ne-like Hf and W, we have reported atomic data in the form of multiconfiguration Dirac–Fock transition energies and wavefunction compositions of 209 levels belonging to the configurations 2s22p6, 2s22p5ns (n = 3, 4, 5, 6, 7), 2s22p5np (n = 3, 4, 5, 6, 7), 2s22p5nd (n = 3, 4, 5, 6, 7), 2s22p5nf (n = 4, 5), 2s22p55g, 2s2p6ns (n = 3, 4, 5), 2s2p6np (n = 3, 4, 5), 2s2p6nd (n = 3, 4, 5), 2s2p6nf (n = 4, 5), and 2s2p65g of Hf LXIII, Ta LXIV, W LXV, and Re LXVI. Radiative rates, oscillator strengths, transition wavelengths, and line strengths have been calculated for ground state electric dipole (E1) transition among these levels. These values were obtained using GRASP (general-purpose relativistic atomic structure package) code, which includes Breit and QED effects along with Dirac–Fock potential and second-order Coulomb interaction. We have compared our results with the data compiled using FAC (flexible atomic code) and also with the recent results available in the literature. The accuracy of the data is assessed. We predict new energy levels, oscillator strength, and transition probability data, where no other theoretical or experimental results are available, which will form the basis for future experimental work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call