Abstract

Fine constructing the chemical environment of the central metal is vital in developing efficient single-atom catalysts (SACs). Herein, the atomically dispersed Cu on the N-doped carbon is modulated by introducing CuP moiety to CuNC SAC. Through fine-tuning with another heteroatom P, the Cu SAC shows the superior performance of ethylene oxychlorination. The Cu site activity of Cu-NPC is four times higher than the P-free Cu-NC catalyst and 25 times higher than the Ce-promoted CuCl2 /Al2 O3 catalyst in the long-term test (>200h). The selectivity of ethylene dichloride can be splendidly kept at ≈99%. Combined experimental and simulation studies provide a theoretical framework for the coordination of Cu, N, and P in the complex active center and its role in effectively catalyzing ethylene oxychlorination. It integrates the oxidation and chlorination reactions with superior catalytic performance and unrivaled ability of corrosive-HCl resistance. The concept of fine constructing with another heteroatom is anticipated to provide with inspiration for rational catalyst design and expand the applications of carbon-based SACs in heterogeneous catalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call