Abstract

In a micromaser where a classical field strongly drives the atoms while they cross the cavity, remarkable atom–atom correlations show up at steady state, which vanish much faster than dissipative decay. Hence we consider atom pair correlation measurements in which the detection of the first probe atom prepares a mesoscopic superposition state of the cavity field, that entangles with a second probe atom. The conditional probabilities for the latter atomic detection provide a description of the decoherence of the superposition state, occurring in an open system in the presence of pumping, driving, dissipative, and thermal effects. The decoherence rate scales as the squared interaction time, that sets the separation in phase space between the superposition components, whereas the quantum coherence is unaffected by the atomic pumping. Hence we further investigate the system when the cavity is not pumped. Starting the correlation measurements from a thermal state, we can describe the effect of temperature on decoherence. Starting from a vacuum state, the superposition states are maximally separated Schrodinger cat states, whose decoherence can thus be monitored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.