Abstract

In this paper, the atomic configuration, electronic structure, and work of adhesion for TiN(111)//B2‐NiTi(110) and TiN(111)//B19′‐NiTi(010) interfaces were investigated by first‐principles calculations based on density functional theory (DFT), which aim to provide a theoretical guidance for analyzing the service reliability of TiN films modified NiTi alloy devices. The results of this paper indicated that a hollow‐site stacking structure was formed on the interface when Ti and N were the terminal atoms on two sides. Such interfaces demonstrated a stronger bonding performance and a more stable structure than that with Ni and Ti as the terminal atoms. The work of adhesion of the TiN(111)//B19′‐NiTi(010) interface was 17.47 J/m2, which is greater than the work of fracture of TiN(111) (6.73 J/m2), whereas the work of adhesion of the TiN(111)//B2‐NiTi(110) interface was found to reach 5.49 J/m2, which is lower than the work of fracture of TiN(111). The models of the work of adhesion between the two interfaces indicate that there are significant bond strength changes in the TiN/NiTi interface, when the NiTi substrate undergoes martensitic transformation. The results of this paper contribute significantly to the service reliability analysis of TiN films coated on NiTi alloy devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.