Abstract

Fisher-Shannon (FS) and Lopez-Ruiz, Mancini, and Calbet (LMC) complexity measures, detecting not only randomness but also structure, are computed by using near Hartree-Fock wave functions for neutral atoms with nuclear charge Z=1-103 in position, momentum, and product spaces. It is shown that FS and LMC complexities are qualitatively and numerically equivalent for these systems. New complexity candidates are defined, computed, and compared by using the following information-theoretic magnitudes: Shannon entropy, Fisher information, disequilibrium, and variance. Localization-delocalization planes are constructed for each complexity measure, where the subshell pattern of the periodic table is clearly shown. The complementary use of r and p spaces provides a compact and more complete understanding of the information content of these planes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call