Abstract

We investigate atomic collapse in pseudospin-1 Dirac material systems whose energy band structure constitutes a pair of Dirac cones and a flat band through the conic intersecting point. We obtain analytic solutions of the Dirac-Weyl equation for the three-component spinor in the presence of a Coulomb impurity and derive a general criterion for the occurrence of atomic collapse in terms of the normalized strength of Coulomb interaction and the angular momentum quantum number. In particular, for the lowest angular momentum state, the solution coincides with that for pseudospin-1/2 systems, but with a reduction in the density of resonance peaks. For higher angular momentum states, the underlying pseudospin-1 wave functions exhibit a singularity at the point of zero kinetic energy. Divergence of the local density of states associated with the flat band leads to an inverse square type of singularity in the conductivity. These results provide insights into the physics of the two-body problem for relativistic quantum pseudospin-1 quasiparticle systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.