Abstract

The interaction of a short, few-cycle light pulse and an atom which is prepared initially in a superposition of two stationary states is shown to exhibit strong signatures of atomic coherence. For a given waveform of the laser pulse, appropriate quantum mechanical relative phase between the constituents of the initial superposition can increase the ionization probability by a factor of three. A similarly strong effect can be observed when the waveform of the ionizing pulse is changed. These results allow for intuitive explanations, which are in agreement with the numerical integration of the time dependent Schr\"{o}dinger equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.