Abstract

The nonlinear transient effects, similar to self-induced transparency and adiabatic following, are studied for a moving two-level atom that is entering into an ideal microwave cavity in a coherent superposition of its states. The atom undergoes a one-photon transition in the cavity, sustaining a spatial field distribution for a single-mode coherent (or thermal or Fock state) field. For some particular choice of parameters of atomic coherence, removal of an appreciable amount of field energy from the cavity could be observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.