Abstract

Single-atom electrocatalysts have attracted board interest in the recent years as they combine the advantages of heterogeneous and homogeneous electrocatalysts. Nevertheless, single-atom electrocatalysts with single metal component cannot further satisfy the demand of catalytic properties. This work developed atomic Co/Ni dual sites in N-doped porous carbon Janus-like frameworks through epitaxial growth of cobalt based MOFs on nickel complexes. Structural characterization and atomic-scale transmission electron microscopy revealed the homogeneously dispersed active sites of Co-Ni alloy and single Co/Ni atoms. Electrochemical data strongly demonstrated the advantages of integrating Co-MOF and Ni complex with different topological structures to form a Janus-like structure. The resultant catalysts afforded onset potential of 0.93 V and half-wave potential of 0.84 V for oxygen reduction reaction in alkaline media, and 0.86 V and 0.73 V in acid media, which is better than single noble-metal-free catalysts, even close to commercial Pt/C. Besides, the catalysts also exhibited good oxygen evolution reaction performance (a current density of 10 mA cm−2 at a potential of 1.59 V) and overvoltage between ORR and OER is 0.78 V. Density functional theory calculations indicated the high electrocatalytic activities are originated from the synergetic effect of atomic Co/Ni-N-C bonds and microstructure of the prepared materials. This work paves a new avenue for the development of multiatomic electrocatalysts for energy conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.