Abstract
We propose two alternative entanglement concentration protocols (ECPs) using the Faraday rotation of photonic polarization. Through the single-photon input-output process in cavity QED, it is shown that the maximally entangled atomic (photonic) state can be extracted from two partially entangled states. The distinct feature of our protocols is that we can concentrate both atomic and photonic entangled states via photonic Faraday rotation, and thus they may be universal and useful for entanglement concentration in the experiment. Furthermore, as photonic Faraday rotation works in low-$Q$ cavities and only involves virtual excitation of atoms, our ECPs are insensitive to both cavity decay and atomic spontaneous emission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.