Abstract

First-principles calculations of the atomic and electronic structure of crystalline CoFeB∕MgO∕CoFeB magnetic tunnel junctions (MTJs) are performed to understand the effect of B on spin-dependent transport in these junctions. The authors find that it is energetically favorable for B atoms to reside at the crystalline CoFeB∕MgO interface rather than remain in the bulk of the crystalline CoFeB electrode. The presence of B at the interfaces is detrimental to tunneling magnetoresistance (TMR) because it significantly suppresses the majority-channel conductance through states of Δ1 symmetry. Preventing B segregation to the interfaces during annealing should result in an enhanced TMR in CoFeB∕MgO∕CoFeB MTJs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.