Abstract

Doping is one of the most popular strategies to modify the properties of polycrystalline materials, because the dopants prefer to segregate at the grain boundaries (GBs) and influence the structural and electronic properties of the materials. Understanding how dopants segregate at GBs and how they affect the resultant GB properties are essential. Here, we experimentally characterized the atomic structures and the electronic band structures of Ti-doped Σ7{45¯10} and Σ7{23¯10} GBs in α-Al2O3 by atomic resolution scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDXS) and valence electron energy-loss spectroscopy (EELS). It was found that Ti preferentially segregated at specific atom sites driven by ionic size mismatch between Ti3+ and Al3+, which leads to structural transformations in both GBs. Direct valence EELS measurement revealed the segregation of Ti3+ ions introduces impurity band within the bandgap in Al2O3 GBs. These results provide an in-depth understanding of the local atomic and electronic band structures for Ti-doped GBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.