Abstract

BackgroundIn the last decade, the inhibition of protein-protein interactions (PPIs) has emerged from both academic and private research as a new way to modulate the activity of proteins. Inhibitors of these original interactions are certainly the next generation of highly innovative drugs that will reach the market in the next decade. However, in silico design of such compounds still remains challenging.Methodology/Principal FindingsHere we describe this particular PPI chemical space through the presentation of 2P2IDB, a hand-curated database dedicated to the structure of PPIs with known inhibitors. We have analyzed protein/protein and protein/inhibitor interfaces in terms of geometrical parameters, atom and residue properties, buried accessible surface area and other biophysical parameters. The interfaces found in 2P2IDB were then compared to those of representative datasets of heterodimeric complexes. We propose a new classification of PPIs with known inhibitors into two classes depending on the number of segments present at the interface and corresponding to either a single secondary structure element or to a more globular interacting domain. 2P2IDB complexes share global shape properties with standard transient heterodimer complexes, but their accessible surface areas are significantly smaller. No major conformational changes are seen between the different states of the proteins. The interfaces are more hydrophobic than general PPI's interfaces, with less charged residues and more non-polar atoms. Finally, fifty percent of the complexes in the 2P2IDB dataset possess more hydrogen bonds than typical protein-protein complexes. Potential areas of study for the future are proposed, which include a new classification system consisting of specific families and the identification of PPI targets with high druggability potential based on key descriptors of the interaction.Conclusions2P2I database stores structural information about PPIs with known inhibitors and provides a useful tool for biologists to assess the potential druggability of their interfaces. The database can be accessed at http://2p2idb.cnrs-mrs.fr.

Highlights

  • In the last decade, the inhibition of protein-protein interactions (PPIs) has emerged from both academic and private research as a new way to modulate the activity of proteins

  • 2P2I database stores structural information about PPIs with known inhibitors and provides a useful tool for biologists to assess the potential druggability of their interfaces

  • The inhibition of protein-protein interactions (PPIs) has emerged from both academic and private research as a new way to modulate the activity of proteins

Read more

Summary

Introduction

The inhibition of protein-protein interactions (PPIs) has emerged from both academic and private research as a new way to modulate the activity of proteins (for an in depth review see Roche and Morelli [1]). PPIs can be involved in a network of complex interactions that play a central role in various cellular events These interactions control processes involved in both normal and pathological pathways, which include signal transduction, cell adhesion, cellular proliferation, growth, differentiation, viral self-assembly, programmed cell death and cytoskeleton structure (for a review refer to [3]). In parallel to this new field, large scale genomics and proteomics programs have permitted the identification of entire protein networks interactomes at the cellular level. In silico design of such compounds still remains challenging

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.