Abstract

Organoselenium and selenophosphorus compounds are ubiquitously found in biologically active compounds, agrochemicals, functionalized materials etc. Although selenium is a micronutrient and an essential trace element, its contamination/consumption in higher concentrations is extremely dangerous. However, most of the previous selenation reactions generate toxic selenium waste as a by-product. Thus development of green synthetic protocols of these compounds is in high demand. We report herein a mild base-catalyzed cross-dehydrogenative coupling (CDC) between electron-rich arenes and phenylselenol to afford 3-selenylindole or selenylated phenols under air at room temperature. Interestingly, in the presence of a base and oxygen, the phenylselenol is converted into the diphenyldiselenide and provides almost quantitative yield. Similarly, a mild synthesis of selenophosphates was also achieved from the corresponding diorganyldiselenide or phenylselenols and nucleophilic phosphonates in a "dump and stir" manner under an oxygen balloon without a base or catalyst. From the preliminary mechanistic studies for selenation of indoles and phosphonates with TEMPO and EPR of the reaction mixture, it was evident that the reaction proceeds through the anionic pathway, which is in sharp contrast to the previous literature. The present reactions proceed smoothly under the mild conditions, furnishing high to almost quantitative yields in several cases. The reaction is easily scaled up to gram scale and has been demonstrated for the synthesis of an anti-HIV zidovudine (AZT) analogue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.