Abstract

AbstractThis investigation reports the polymerization of hexyl acrylate (HA) using atom transfer radical polymerization technique and subsequently the preparation of its di‐ and triblock copolymers with methyl methacrylate. Atom transfer radical polymerization of HA was investigated using different initiators and CuBr or CuCl as catalyst in combination with varying ligands, e.g., 2,2′‐bipyridine and N,N,N′,N″,N″‐pentamethyl diethylenetriamine. Reaction parameters were adjusted to successfully polymerize HA with well‐defined molecular weights and narrow polydispersity indices. The polymerization was better controlled by the addition of polar solvents, which created a homogeneous catalytic system. UV–vis analysis showed that the polar solvent, acetone coordinated with copper (I), changes the nature of the copper catalyst, thereby influencing the dynamic equilibrium of activation–deactivation cycle. This resulted in improved control over polymerization as well as in lowering the polydispersity indices, but at the cost of polymerization rate compared with the bulk process. The presence of Br end group in the polymer chains was confirmed by 1H NMR as well as MALDI‐TOF mass analysis. In addition, poly(hexyl acrylate) was used as macroinitiator to prepare various “all‐acrylate” block (diblock, triblock) copolymers that were characterized by GPC and 1H NMR. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3499–3511, 2008

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.