Abstract

The scattering of He atoms from a CO molecule adsorbed on a Pt surface is studied theoretically by methods that include: (1) Numerically exact solutions of the time-dependent Schrödinger equation for the scattered wavepacket; (2) The sudden approximation; (3) Classical trajectories. The methods are used to obtain detailed insight into the collision dynamics, and to predict and understand interesting features in the angular intensity distribution of the scattered atoms. The analysis and interpretation of the exact quantum results is facilitated by calculations of the probability current density of the scattered particles. Some of the main results are: (i) The angular intensity distribution exhibits nonspecular maxima of two types: Several of the peaks are rainbow effects induced by the adsorbate, while others (at angles nearer to the specular) are Fraunhofer diffraction interferences. Both types of peaks contain useful, largely complementary, information on adsorbate geometry and on the He/adsorbate interaction. (ii) The angular intensity distribution is quantitatively sensitive to the adsorbate distance from the surface, suggesting possible determination of that distance from experimental data. (iii) The corrugation due to the adsorbate leads to scattering resonances associated with temporary trapping of the scattered atom at the defect site. This is a new effect of potential importance for experimental studies of atom/defect interactions. The results obtained here suggest that He scattering from isolated adsorbates exhibits distinct, substantial effects, measurement of which should yield very useful data on the adsorbates and on their interactions with gas-phase atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.