Abstract

Abstract Titanium aluminides have a number of potential high temperature applications due to their good elevated-temperature mechanical properties, low density, and good creep and oxidation resistance. However, fabrication of commercial components of these materials has been impeded by their poor mechanical properties at ambient temperatures. Significant efforts with various degrees of success have been made to improve the mechanical properties of these TiAl alloys by doping them with a variety of different elements including B, C, Cr, Er, Fe, Mn, Mo, Ni, Nb, P, Si, Ta, V and W. One of the optimum analytical tools for investigating the effects of these additions on the microstructure is the atom probe field ion microscope. However, relatively few studies of titanium aluminides, compared to some other intermetallic compounds, have performed by atom probe field ion microscopy. This lack of attention can be attributed to the brittle nature of the material, in-situ transformations that occur during the field ion microscopy and preferential evaporation problems that were encountered in some of the early studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.