Abstract

The quantum effect of nonlinear co-tunnelling process, which is dependent on atom-pair tunneling and asymmetry of an double-well trap, is studied by using an asymmetrical extended Bose–Hubbard model. Due to the existence of atom-pair tunneling that describes quantum phenomena of ultracold atom-gas clouds in an asymmetrical double-well trap, the asymmetrical extended Bose–Hubbard model is better than the previous Bose–Hubbard model model by comparing with the experimental data cited from the literature. The dependence of dynamics and quantum phase transition on atom-pair tunneling and asymmetry are investigated. Importantly, it shows that the asymmetry of the extended Bose–Hubbard model, corresponding to the bias between double wells, leads to a number of resonance tunneling processes, which tunneling is renamed conditional resonance tunneling, and corrects the atom-number parity effect by controlling the bias between double wells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call