Abstract

We present a simple experimental scheme, based on standard atom optics techniques, to design highly versatile model systems for the study of single particle quantum transport phenomena. The scheme is based on a discrete set of free-particle momentum states that are coupled via momentum-changing two-photon Bragg transitions, driven by pairs of interfering laser beams. In the effective lattice models that are accessible, this scheme allows for single-site detection, as well as site-resolved and dynamical control over all system parameters. We discuss two possible implementations, based on state-preserving Bragg transitions and on state-changing Raman transitions, which respectively allow for the study of nearly arbitrary single particle Abelian U(1) and non-Abelian U(2) lattice models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.