Abstract

In this paper, we investigate quantum manipulations in an open atom-molecule conversion system. Through the transformation for the basis of the system, a set of time-dependent equations are derived under mean field approximation. We find that transitions between different dynamic areas of the system can be realized through manipulating an external rotating magnetic field, which corresponds to the tunneling rate in the equation. Through investigating the phase space of the system, we design an efficient method to combine pure cold molecule and pure molecular state so that it can be reached with much shorter time. Furthermore, manipulation of laser signal modulation, external diving and the distance-selective diffusion are also discussed in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.