Abstract

We present a cavity dissipation scheme to prepare a hybrid system of an atomic ensemble and a moving mirror in squeezed and entangled states. This scheme is based on four-wave mixing in the atoms and radiation pressure on the mirror, both of which combine to lead to Bogoliubov interactions of the atoms and the mirror with the cavity fields. Under adiabatic conditions, the cavity fields cause the hybrid Bogoliubov modes to evolve into the vacuum states, which correspond to the two-mode squeezed and entangled states. The dependence of the hybrid entanglement on the system parameters is also presented in and beyond the Bogoliubov interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.