Abstract

Photocatalytic CO2 reduction reaction (CO2RR) is believed to be a promising remedy to simultaneously lessen CO2 emission and obtain high value-added products, but suffers from the thwarted activity of photocatalyst and poor selectivity of product. Over the past decade, aided by the significant advances in nanotechnology, the atom manufacturing of photocatalyst, including vacancies, dopants, single-atom catalysts, strains, have emerged as efficient approaches to precisely mediate the reaction intermediates and processes, which push forward in the rapid development of highly efficient and selective photocatalytic CO2RR. In this review, we summarize the recent developments in highly efficient and/or selective photocatalysts toward CO2RR with the special focus on various atom manufacturing. The mechanisms of these atom manufacturing from active sites creation, light absorbability, and electronic structure modulation are comprehensively and scientifically discussed. In addition, we attempt to establish the structure–activity relationship between active sites and photocatalytic CO2RR capability by integrating theoretical simulations and experimental results, which will be helpful for insights into mechanism pathways of CO2RR over defective photocatalysts. Finally, the remaining challenges and prospects in this field to improve the photocatalytic CO2RR performances are proposed, which can shed some light on designing more potential photocatalysts through atomic regulations toward CO2 conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.