Abstract

Atomic manipulation enables us to fabricate a unique structure at the atomic scale. So far, many atomic manipulations have been reported on conductive surfaces, mainly at low temperature with scanning tunnelling microscopy, but atomic manipulation on an insulator at room temperature is still a long-standing challenge. Here we present a systematic atomic manipulation on an insulating surface by advanced atomic force microscopy, enabling construction of complex patterns such as a 'Swiss cross' of substitutional bromine ions in the sodium chloride surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.