Abstract

We present evidence for compressive stress generation via atom insertion into grain boundaries in polycrystalline Mo thin films deposited using energetic vapor fluxes (<∼120 eV). Intrinsic stress magnitudes between −3 and +0.2 GPa are obtained with a nearly constant stress-free lattice parameter marginally larger (0.12%) than that of bulk Mo. This, together with a correlation between large compressive film stresses and high film densities, implies that the compressive stress is not caused by defect creation in the grains but by grain boundary densification. Two mechanisms for diffusion of atoms into grain boundaries and grain boundary densification are suggested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.