Abstract

For understanding the mechanism of diamond growth at high temperature–high pressure (HTHP) from a metallic catalyst–graphite system, it is of great interest to perform atomic force microscopy (AFM) experiments, which provide a unique technique different from that of normal optical and electronic microscopy studies, to study the topography of HTHP as-grown diamond single crystals. In the present paper, we report first AFM results on diamond single crystals grown from a Fe-Ni-C system at HTHP to reveal the growth mechanism of diamond single crystals at HTHP. AFM images for as-grown diamond samples show dark etch pits on the (111) surface, indicating dislocations. Some fine particles about 100–300 nm in dimension were directly observed on the (100) diamond surface. These particles are believed to have been formed through transition of graphite to diamond under the effect of the catalyst and to have been transported to the growing diamond surface through a metallic thin film by diffusion. The roughness of the (100) diamond surface is found to be about several tens of nanometers through profile analysis. The diamond growth at HTHP, in a sense, could be considered as a process of unification of these fine diamond particles or of carbon-atom-cluster recombination on the growing diamond crystal surface. Successive growth interlayer steps on the (111) diamond surface were systemically examined. The heights of the growth interlayer steps were measured by sectional analysis. It was shown that the heights of the growth interlayer steps are quite different and range from about 10 to 25 nm. The source of the interlayer steps might be dislocations. The diamond-growth mechanism at HTHP could be indicated by the AFM topography of the fine diamond particles and the train-growth interlayer steps on the as-grown diamond surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.