Abstract

Prevention of hydrogen (H) penetration into passive films and steels plays a vital role in lowering hydrogen damage. This work reports effects of atom (Al, Cr, or Ni) doping on hydrogen adsorption on the α-Fe2O3 (001) thin films and permeation into the films based on density functional theory. We found that the H2 molecule prefers to dissociate on the surface of pure α-Fe2O3 thin film with adsorption energy of −1.18 eV. Doping Al or Cr atoms in the subsurface of α-Fe2O3 (001) films can reduce the adsorption energy by 0.03 eV (Al) or 0.09 eV (Cr) for H surface adsorption. In contrast, Ni doping substantially enhances the H adsorption energy by 1.08 eV. As H permeates into the subsurface of the film, H occupies the octahedral interstitial site and forms chemical bond with an O atom. Comparing with H subsurface absorption in the pure film, the absorption energy decreases by 0.01–0.22 eV for the Al- and Cr-doped films, whereas increases by 0.82–0.96 eV for the Ni-doped film. These results suggest that doping Al or Cr prevents H adsorption on the surface or permeation into the passive film, which effectively reduces the possibility of hydrogen embrittlement of the underlying steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.