Abstract

Sensorineural hearing loss (SNHL) is a prevalent condition in otolaryngology. A key obstacle is finding effective strategies for regenerating damaged cochlear hair cells in adult animals. A practical and reliable approach has been developed to create a superior cell source for stem cell transplantation in the inner ear to treat SNHL. Atoh1 is involved in the differentiation of neurons, intestinal secretory cells, and mechanoreceptors including auditory hair cells, and thus plays an important role in neurogenesis. Lentivirus-mediated transfection of bone marrow mesenchymal stem cells (BMSCs) was utilized to achieve stable expression of the essential transcription factor Atoh1, which is crucial for developing auditory hair cells without compromising cell survival. By manipulating the induction conditions through altering the cell growth environment using anti-adherent culture, the synergistic impact of basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) was effectively applied to significantly improve the differentiation efficiency of bone marrow-derived mesenchymal stem cells (BMSC) into neural stem cells (NSCs) following Atoh1 transfection, thereby reducing the induction time. The study indicated that the newly proposed transdifferentiation method effectively transformed BMSCs into NSCs in a controlled environment, presenting a potential approach for stem cell transplantation to promote hair cell regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.